
PHYSICAL REVIEW E 69, 026104 ~2004!
Density of states for almost-diagonal random matrices
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We study the density of states~DOS! for disordered systems whose spectral statistics can be described by a
Gaussian ensemble of almost-diagonal Hermitian random matrices. The matrices have independent random
entriesHi> j with small off-diagonal elements:^uHiÞ j u2&!^uHii u2&;1. Using the recently suggested method of
a virial expansion in the number of interacting energy levels@J. Phys. A36, 8265 ~2003!#, we calculate the
leading correction to the Poissonian DOS in the cases of the Gaussian orthogonal and unitary ensembles. We
apply the general formula to the critical power-law banded random matrices and the unitary Moshe-Neuberger-
Shapiro model and compare the DOS’s of these models.
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Recently, extensive attention has been devoted to un
ventional random matrix theories~RMT’s! that interpolate
between the Wigner-Dyson RMT and banded RM~BRM!
with the ~almost! Poissonian level statistics and can be us
as a helpful tool to explore the localization transition. One
these models is the power law banded random matrix~PL-
BRM! theory @1–3# for which the variance of the off-
diagonal elements reads

PLBRM: ^uVi j u2&5
1

2

1

11FN

p
sinS p

N
u i 2 j u D G2aY b2a

.

~1!

It is nearly constant inside the bandu i 2 j u,l;b, and de-
creases as a power-law function^uVi j u2&;1/u i 2 j u22a for
u i 2 j u.l. Equation~1! is written for periodic boundary con
ditions of the PLBRM Hamiltonian. The special casea51 is
relevant for description of critical systems with multifract
eigenstates@1–5#, in particular for systems at the Anderso
localization-delocalization transition point. On the oth
hand, it has been conjectured@6# that the spectral statistics o
critical PLBRM with large b can be mapped onto th
Calogero-Sutherland~CS! model @7# at low temperature
where instead of the spectral problem one studies the st
tics of interacting ~for the real off-diagonal elements i
PLBR! or noninteracting~for the complex off-diagonal ele
ments in PLBR! fermions in a parabolic confinement pote
tial. The casea.1 corresponds to the power-law localizatio
which can be found in certain periodically driven quantu
mechanical systems@8#. If a<1/2 the spectral statistics o
PLBRM approaches the Wigner-Dyson universality cla
with b51 or 2.

The exactly solvable model of Moshe, Neuberger, a
Shapiro~MNS! also incorporates both the Poissonian and
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Wigner-Dyson level statistics@9#. The probability distribu-
tion of the HamiltonianĤ in MNS is given by P(Ĥ)
5 * dÛ PÛ(Ĥ), where

PÛ~Ĥ!}expS 2TrĤ22S N

2pbD 2

Tr~@Û,Ĥ#@Û,Ĥ#†! D ;

~2!

the matrixÛ is either unitary for complex Hermitian matri
cesĤ ~the unitary MNS! or orthogonal for real symmetric
matricesĤ ~orthogonal MNS! anddÛ is the Haar measure

The spectral properties of the unitary MNS turn out to
equivalent to a system of noninteracting one-imensio
(1D) fermions in a parabolic confinement@9#. The spectral
statistics of the orthogonal MNS coincides@10# with the sta-
tistics of 1D fermions in a parabolic potential with the long
range attractive interaction}(xi2xj )

22. This model of
strongly correlated fermions is a particular case of
Calogero-Sutherland model which has been intensively s
ied as a toy model for the fractional statistics. In both ca
the parameterb of MNS corresponds to the inverse temper
ture of CS:b;1/TCS.

The connection between the two models is especi
clear in the unitary case where the unitary matrixÛ
5M diag$eiw i% M† can be diagonalized by a unitary tran
formation. Then the variances ofVi , j5(M†ĤM ) i , j in MNS
are given by

MNS: ^uVi j u2&5
1

2

1

11S N

pbD 2

sin2S w i2w j

2 D . ~3!

One can easily see that Eq.~3! coincides with Eq.~1! at a51
if the phaseswn52pn/N are arranged as an ordered arr
on a circle. In general the MNS model can be considered
©2004 The American Physical Society04-1
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O. YEVTUSHENKO AND V. E. KRAVTSOV PHYSICAL REVIEW E69, 026104 ~2004!
an extension of the PLBRM model for the case of the ar
trary arrangement of phaseswn randomly distributed over the
circle.

The following formula is valid to calculate the averag
value of an observableA(Ĥ) which is invariant under the
transformationĤ→M†ĤM :

^^A&Ĥ&Û[
E ^A&Ĥ P~$w i%!D$w i%

E P~$w i%!D$w i%

. ~4!

Here P($w%) is the joint probability distribution of phase
@9#

P~$w%!;)
i . j

sin2S w i2w j

2 D
11S N

pbD 2

sin2S w i2w j

2 D ~5!

and^A&Ĥ stands for the averaging over the Gaussian rand
matrix Ĥ with entries having zero mean value and the va
ance given by Eq.~3!.

The two-point correlation function, which follows from
Eq. ~5! after the integration over all but two phases, w
calculated by Gaudin with the help of the model of fr
noninteracting fermions with a linear spectrum@11#:

R2~s!512
1

~2pb!2U E2 ln (e2pb21)

` ei(vs/b) dv

ev11
U2

,

s5f i2f j[~w i2w j !~N/2p!. ~6!

If usu@b, the correlation function is almost consta
R2(usu@b)→1. There is a repulsion between phases a
small scale controlled byb: R2(usu!b);(s/b)2.

For b@1 the spectral statistics of the critical PLBRM
with a51 and MNS are asymptotically the same and ab
→` they approach the Wigner-Dyson statistics@2,3,6#. This
is because the phase repulsion in MNS is strong at largb.
The phasesf i , j form an approximately equidistant latticelik
structure@2#. In the opposite caseb!1, the phase repulsion
in MNS is weak and the phasesf i , j do not form a regular
structure. Disorder in the phase arrangements at small
tances uf i2f j u;1 may become especially importan
Therefore, there is no evident correspondence between
cal PLBRM and MNS atb!1 even though both ensemble
have the same first correction to the Poissonian level rigi
@3,12# and the numerics have revealed a relatively small
ference in the level rigidity of PLBRM and MNS atb;1
@12#.

The progress in BRM and PLBRM theories became p
sible because of mapping@1,13# onto the nonlinear super
symmetrics-model@14# that allowed one to obtain rigorou
results by using various powerful methods of the field theo
However, thes-model always starts from delocalized~i.e.,
diffusive! modes and such mapping is only justified if th
bandwidth l@1. In the opposite case where all the o
02610
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diagonal matrix elements are parametrically small compa
to the diagonal ones and the system is close to the loca
tion, no field-theoretical approach is known so far. Yet su
almost-diagonalRMT’s may possess nontrivial propertie
because of the slow decay of the off-diagonal matrix e
ments ^uHi j u2& with increasing u i 2 j u. For instance, it is
of fundamental interest to study the spectral statistics
systems with power-law localization that takes place
the power-law banded random matrix ensembles ata.1.
Another problem to study is the critical almost-diagon
PLBRM. It is known that the eigenvectors of PLBRM wit
a51 remain multifractal for an arbitrary small value o
l @5#. This means that the typical eigenfunction is extend
though very sparse at smalll. Their fractal dimensions are
small as compared to the dimensiond51 of the underlying
chain with the long-range hopping. Thus almost-diago
PLBRM’s may display a localization-delocalization trans
tion with changing the exponenta as well as their large
bandwidth counterpart@1#.

Recently, we have suggested a method that allows u
study spectral statistics of a disordered system describe
an ensemble of the almost-diagonal random matrices@15#. It
is a virial expansion in the number of interacting energ
levels. Unlike the field-theoretical approach, the virial expa
sion starts from the Poissonian statistics and yields a reg
expansion in powers of the small parameter controlling
ratio of the off-diagonal elements to the diagonal on
^uHiÞ j u2&/^Hii

2 &;b2!1. The expansion has been repr
sented by the summation of diagrams which are gener
with the help of the Trotter formula. A rigorous selection ru
has been established for the diagrams, which allows u
account for exact contributions of a given number of re
nant and nonresonant interacting levels. The method offe
controllable way to find an answer to the question of whe
weak interaction of levels can drive the system from loc
ization toward criticality and delocalization. An examp
of the spectral form factor has been considered for a
neric dependence of the variance^uHiÞ j u2& on the difference
i 2 j . It has been shown that a term of the order ofbc21 is
governed by the interaction ofc energy levels. The genera
theory has been applied to the Rosenzweig-Porter@16# model
and to the critical PLBRM.

In the present paper, we continue studying the spec
statistics with the help of the virial expansion. We calcula
the density of states~DOS! for the ensembles of the Gaussia
almost-diagonal random matrices. Based on the detailed
sentation of the method in Ref.@15#, we will explain the
corresponding diagrammatic technique for DOS. We der
the leading correction to the Poissonian DOS for the mod
of critical PLBRM and MNS.

Let us consider a Hermitian random matrix~RM! of size
N3N, N@1, from a Gaussian ensemble. We assume
the matrix entries are random and independent. The RM
the HamiltonianĤ of the matrix Schro¨dinger equationĤcn
5encn , whereen andcn are the eigenvalues and eigenve
tors, respectively. We define statistical properties of the m
trix entries as
4-2
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DENSITY OF STATES FOR ALMOST-DIAGONAL . . . PHYSICAL REVIEW E 69, 026104 ~2004!
^Hi , j&50, ^Hi ,i
2 &5

1

b
, ^uHi , j u2&5b2 F~ u i 2 j u!, iÞ j ,

~7!

where F(u i 2 j u).0 is a smooth function of its argumen
and the parameterb is small:

b!1.

The condition b!1 means that RM is almost diagona
The parameterb corresponds to the Dyson symmetry class
bGOE51, bGUE52. The angular brackets denote the e
semble averaging.

We will study the spectral properties of the system co
centrating on the ensemble averaged density of states

r~E!5K (
n

d~E2en!L . ~8!

For almost-diagonal RM the representation of spectral sta
tics in the time domain is more convenient@15# therefore we
explore below the Fourier transformed DOS as a function
time:

C~ t !5^TreiĤt&. ~9!

We start with a brief explanation of the method of t
virial expansion that has been developed in detail in R
@15#. As far as we investigate the properties of almo
diagonal RM’s the Hamiltonian can be naturally divided in
a diagonal partĤ« and a matrix of hopping elementsV̂:

Ĥ[Ĥ«1V̂. ~10!

For a strictly diagonal matrix (V̂50) the Poissonian DOS
CP(t) is calculated straightforwardly from Eq.~9!:

CP~ t !5Ne2t2/2b. ~11!

It follows from the definition~7! that the hopping ele-
mentsHi , j[Vi , j;b are small compared to the diagonal on
Hi ,i[« i;1. However, a direct expansion of the expone
tials ei(Ĥ«1V̂)t in Eq. ~9! in terms ofV̂ would involve serious
difficulties because the matricesĤ« and V̂ do not commute
with each other. One possible way to overcome these p
lems is to representei(Ĥ«1V̂)t as a product of exponential
containing matricesĤ« and V̂ separately. We do this usin
the Trotter formula@17#

eÂ1B̂5 lim
n→`

~eÂ/n eB̂/n!n⇒eiĤt5 lim
n→`

)
p51

n

~eiĤ«t/neiV̂t/n!.

~12!

In order to obtain corrections toC(t) proportional to (bt)m

one has to expandm different exponentials in the infinite
product in the right-hand side~RHS! of Eq. ~12!, e itV̂/n.1
1 i(tV̂/n), setting in the restn2m exponentialsV̂→0, and
to perform the Gaussian averaging overĤ« andV̂. The terms
02610
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with an odd powerm give zero after the disorder averagin
Thus, the powerm must be even and we can substitutem
→2k.

There aren!/2k!(2k2n)! ways to choose 2k exponen-
tials to be expanded inV̂ from the RHS of Eq.~12!. There-
fore, before taking the limitn→`, one has to account for al
possible different arrangements of the expanded exponen
which results in a summation over the Trotter variab
p1 ,p2 , . . . ,p2k21 ; ( l 51

2k21 pl[n. Each discrete variablepl

denotes the number of successive exponentialseiĤ«t/n fused
together:

We can introduce scaled variablesYl5pl /n converting the
summation overpl to the integration overYl and eliminating
the parametern from further calculations. The resulting ex
pression must be averaged over the diagonal elements« i and
yields the integralIb(t,k) which depends on timet, powerk,
and parameterb.

For almost diagonal RM’s, the higher the number of i
teracting energy levels the smaller the correction to the P
sonian level statistics governed by that interaction. In p
ticular, to findthe leading in b correction C1(t) to CP(t),

C~ t !.CP~ t !1C1~ t !1•••, C1~ t, b!1!!CP~ t !,

we retain in the obtained series all terms that correspon
an interaction of two different species of the diagonal e
ments« i and « j via the hopping elementsVi , j and Vj ,i for
any indicesiÞ j in the range from 1 toN. Then at fixedk we
find the following contribution to the correctionC1(t):

C1
(k)5~ i t !2k Ib~ t,k! (

iÞ j

N

^~Vi , jVj ,i !
k&.

After integration over 2k22 Trotter variables
$Y1 ,Y2 , . . .Y2k22%, Ib can be simplified to one-
dimensional integral

Ib~ t,k!5
e2t2/4b

k! ~k21!! E0

1/2

~1/42Y2!k21e2(tY)2/bdY.

~13!

In accordance with the definition~7!, the Gaussian averag
of ^(Vi , jVj ,i)

k& can be transformed to the following form:
4-3
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O. YEVTUSHENKO AND V. E. KRAVTSOV PHYSICAL REVIEW E69, 026104 ~2004!
^~Vi , jVj ,i !
k&5Kb~k!3b2k F k~ u i 2 j u!, ~14!

whereKb(k) is the combinatorial factor. Due to the Wic
theorem, it is equal to factorials

Kb~k!5H ~2k21!!!, b51,

k!, b52.
~15!

We have to sum the contributionsC1
(k) over the parameterk

at the end,C15 (k C1
(k) . This summation yields the answe

for C1(t) as a series in powers of the product (bt):

C1~ t !5N (
k51

`

~21!k~bt!2k Ib~ t,k! Kb~k! RN~k!,

RN~k![
1

N (
iÞ j

N

F k~ u i 2 j u! ~16!

~see the graphic presentation in Fig. 1!. We will show below
that C1 is not larger thanO(b1). We emphasize that neithe
the combinatorial factorKb(k) nor the integral over the Trot
ter variablesIb(t,k) depend on the correlation functio
F(u i 2 j u). Thus, they are universal. The factorRN(k) is, on
the contrary, model dependent. It arises because of sum
tion of the product of the correlation functionsF(u i 2 j u)
over the indicesi and j and is not universal. If we associa
the HamiltonianĤ with a one-dimensional chain havin
long-range hopping between different sites, the summa
over i and j turns out to be the summation in the real spa
along the sites of the chain. As the functionF(u i 2 j u) de-
pends only on the difference ofu i 2 j u the leading part of the
real space sum is

RN~k!.2 (
m51

`

F k~m!1O~1/N!. ~17!

In what follows we will neglect the correction of the ord
O(1/N) to RN(k).

To further simplify the analysis of DOS we insert Eq
~13!, ~15!, ~17! into the series~16! and change the summa
tion order. At first, we sum over the powerk getting the
answer forC1(t) as a one-dimensional series overm, i.e., as
the sum in the real space

FIG. 1. Graphic illustration of the series~16! for the leading
correctionC1(t) to the Poissonian DOSCP(t). Boxes with differ-
ent patterns mark the energy levels« i and« j . In each diagram with
a givenk, they are connected by thek interaction lines which are

associated with the factort2k^V̂2k&;(tb)2k.
a-

n
e

C1~ t !522Ne2
t2

4b (
m51

`

Z~bt,m! Ĩb@ t,Z~bt,m!#,

Z~bt,m![~bt!2F~m!, ~18!

Ĩb~ t,Z![ E
0

1/2

dY e2[( tY)2/b1(1/42Y2)Z]

3H I 0F S 1

4
2Y2DZG2I 1F S 1

4
2Y2DZG , b51,

1, b52.

~19!

An analytical integration overY is easily doable atb52 and
the integral~19! simplifies to the error function

Ĩb52~ t,Z!5e2Z/4A p

2~ t222Z!
erfSAt222Z

8 D .

~20!

Let us consider short- and long-time asymptotics. Ifbt
!1, C1 is determined by a diagram with the minim
number of the interaction lines~see Fig. 1!, i.e., we can
keep in the power series~16! the single term withk51
having Kb(1)51 and Ib(t,1)5(Apb/2utu)exp(2t2/4b)
3erf(t/A4b):

C1~bt!1!.2Nb2
Apb

2
utuexpS 2

t2

4b D erfS t

A4b
D RN~1!,

~21!

which at t,A4b is parametrically smaller thanCP :
C1 /CPubt!1;b3(bt).

One can do the Fourier transform of Eq.~21! and show
that for large energies«@1 the correction to the tail of the
DOS has the same Gaussian exponential dependence a
distribution of diagonal matrix elements ofĤ unlessRN(1)
is divergent:

r~«@1!'NA b

2p
e2(b/2)«2

@11b2 b RN~1!#.

~22!

Thus we conclude that there is no slowly decaying Lifsh
tails for almost diagonal PLBRM witha.1/2 ~including the
critical PLBRM with a51! even though the multipoint cor
relation functions may significantly deviate from the Poiss
distribution.

If t@1, the integralIb can be calculated approximate
by substituting the Diracd function for the exponential in the
integrand of Eq.~13!:
e2(tY)2/b→
Abp

utu
d~Y!⇒Ib~ t,k!.e2t2/4b S utu21

Abp

22k21k! ~k21!!
1O~1/utu2!D , ~23!

and we obtain a simplified version of the series~18!:

026104-4
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DENSITY OF STATES FOR ALMOST-DIAGONAL . . . PHYSICAL REVIEW E 69, 026104 ~2004!
C1~ t@1!.2N Abp e2t2/4b (
m51

`
Z~bt,m!

utu
e2Z(bt,m)/4

3H I 0@Z~bt,m!#2I 1@Z~bt,m!#, b51,

1, b52.
~24!

We note that Z(bt,m)/utu;b3(bt) and, thus, we can
schematically rewrite the asymptotic expression~24! as
C1(t@1).b3C̃1(bt). If the functionC̃1(bt) is finite at any
value of (bt) the correctionC1 is again parametrically
smaller thanCP ~see examples below!.

Now we will apply the general formulas~16!, ~18! for the
specific models of our interest with the definite correlati
function F(u i 2 j u).

The model of Power law banded random matrices. The
model of PLBRM is defined by Eq.~1!. We restrict ourselves
to the critical and almost-diagonal PLBRM witha51 and
b!1 so that the variance~1! simplifies to the following form
@18#:

^uVi j u2&.
1

2

b2

S N

p D 2

sin2S p

N
u i 2 j u D 1O~b4!. ~25!

The term ofO(b4) is not important for the correctionC1.
We neglect this term below.

We define the correlation functionF in Eq. ~7! for a criti-
cal almost-diagonal PLBRM:

F~ u i 2 j u!5
1

2

1

S N

p D 2

sin2S p

N
u i 2 j u D , iÞ j . ~26!

Next we note that the sum in the real spaceRN , Eq. ~17!, is
governed by small distancesm!N and, therefore, its leading
term does not depend on the boundary conditions for
underlying chain with the long-range hopping

(
m51

N

F k~m!5 (
m51

N
1

2k

1

S N

p D 2k

sin2kS p

N
mD

. (
m51

`
1

~2 m2!k
1O~1/N!. ~27!

Substituting Eq.~27! into the series~18! we find the cor-
rectionC1:

C1~ t !52Ne2t2/4b (
m51

` S bt

mD 2

ĨbF t,
1

2S bt

mD 2G . ~28!

Let us consider the limiting cases of small and large tim
If bt!1, we insertRN(1)5p2/6 into Eq.~21! and arrive at
02610
e

.

C1~bt!1!.2N
p5/2Ab

12
b2utu expS 2

t2

4b D erfS t

A4b
D .

~29!

We emphasize that the sum in real spaceRN(1)5 (m m22

converges atm;1. Thus, when timet is small compared
to b21 the correction to the Poissonian DOS of the critic
PLBRM is sensitive to the behavior of the correlation fun
tion F(m) at short distances. This statement is, in fact, m
general and holds true for any ensemble of the almo
diagonal PLBRM, wherea.1/2 andRN(1) converges in the
thermodynamical limitN→` @19#.

If t@1, we substitute the correlation function~26! into
the series~24! which converges atm;tb. If the product (tb)
is large the correctionC1 is not sensitive to the short dis
tancesm;1 and we can replace the sum overm by the
integral and find the asymptotics at the long timetb@1:

C1~ tb@1!.2Nbe2t2/4b3H 2, b51,

p, b52.
~30!

The Moshe-Neuberger-Shapiro model. The model of
MNS is defined by Eq.~3!. Let us consider the unitary cas
with b52. From Eqs.~3! and~7! we find the functionF for
MNS:

F~ uf i2f j u!5
1

2

1

b21FN

p
sinS p

N
uf i2f j u D G2 . ~31!

If b!1, the Gaudin correlation function of the phasesf i , j ,
Eq. ~6!, simplifies to the following form:

R2~s/b!.
~s/b!2

11~s/b!2
. ~32!

The condition^uVi , j u2&!1 holds true in MNS ifuf i2f j u
>1. However, in contrast to the PLBRM case where t
minimal distanceuf i2f j u51, it is violated inside the band
0<uf i2f j u<b where the matrixĤ is no longer almost di-
agonal. This band is, however, narrow atb!1. Therefore,
the contribution of this band to the DOS averaged o
phasesf i is small in the parameterb.

We apply the strategy of the virial expansion to calcula
the average overĤ at the fixed phasesf i , see Eq.~4!. The
phase averaging is done at the last step and it reduces
sum in real space to an integral over the difference of t
phases:

^RN~k!&f i
.2 E

0

`

F k~s! R2~s! ds1O~1/N!. ~33!

The case where the correlation functionF depends on
the difference of the integer indices can be restored fr
Eq. ~33! by substituting a sum of thed functions instead
of the two-point correlator:R2(s)→ (m51

` d(s2m). In
full analogy with PLBRM we can prove that the leading ter
of the function^RN(k)&f i

in MNS does not depend on th
boundary conditions and transform Eqs.~31!–~33! to a sim-
pler form
4-5
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O. YEVTUSHENKO AND V. E. KRAVTSOV PHYSICAL REVIEW E69, 026104 ~2004!
^RN~k!&f i
.2 E

0

` S 1

2

1

b21s2D k

R2~s!ds. ~34!

Substituting Eq.~32! at b!1 into formula~34! we find

^RN~k!&f i
.

2b

~2b2!k E
0

` S2

~11S2!k11
dS. ~35!

We insert Eq.~35! into series~16! and derive an analog o
Eq. ~18! for MNS

C1~ t !52Nbe2t2/8 E
0

` ~ tS!2

~11S2!2 Ĩb52S t,
t2

11S2DdS,

~36!

which reduces to the following expression:

C1~ t !52pNbe2t2/8~12e2t2/8!. ~37!

The answer~37! coincides with the leading inb term of
the Fourier transformed DOS of MNS obtained from t
model of noninteracting 1D fermions in a parabolic confine
ment @9#.

Let us discuss the results obtained by means of the v
expansion for PLBRM in GUE@Eq. ~28! with b52# and
MNS @Eq. ~36!#. First we note that at large time scales,tb
@1, the summation over the real space converges at l
distances (m;tb in PLBRM and s5Sb;tb in MNS!. In
this case, we can simplify the integrand in the right-hand s
of Eq. ~34! by ignoring b in the denominator and puttin
R2→1. We immediately see that the leading term result
from the sum overm in Eq. ~24! is equal to the one originat
ing from the integral overS in Eq. ~36!. Thus, we conclude
that the first corrections to the Poissonian DOS coincide
PLBRM and MNS in the long-time limit@20#:
.
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ge
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r

tb@1⇒ C1~b52!uPLBRM

C1uMNS
.1.

The situation is quite different in the opposite limit of th
short-time scaletb!1, where the asymptotics forC1 is gov-
erned by the single diagram withk51. This diagram is
highly sensitive to the behavior of the functionF at short
distances and, therefore, yields absolutely different answ
for PLBRM and MNS after the summation in real spac
At a fixed value ofm or s the leading diagram is of the
order of ;b2. In the case of PLBRM the sum overm
reduces to a numerical prefactor in Eq.~29! leaving the
power of b2 unchanged. The integration overs in the case
of MNS is strongly affected by the region 0<s<b where
b2F(s) R2(s)us;b;1 and the off-diagonal elements ofĤ
are of the order of diagonal ones. This region makes the m
contribution to the correction to DOS which is small on
because of the small volume of this regionDs}b. Thus we
find that the integration over smalls<b in MNS leads to a
reduction of the power ofb in the short-time limit compared
to the PLBRM case

tb!1⇒ C1~b52!uPLBRM

C1uMNS
;b.

This is a clear manifestation of thenonequivalenceof
PLBRM and MNS models for smallb, or the nonequivalence
of PLBRM at smallb and the CS model at high temperatur
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