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Density of states for almost-diagonal random matrices
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We study the density of staté®OS) for disordered systems whose spectral statistics can be described by a
Gaussian ensemble of almost-diagonal Hermitian random matrices. The matrices have independent random
entriesH; ~; with small off-diagonal elementg{H .;|?)<(|H;;|?)~ 1. Using the recently suggested method of
a virial expansion in the number of interacting energy leyélsPhys. A36, 8265 (2003 ], we calculate the
leading correction to the Poissonian DOS in the cases of the Gaussian orthogonal and unitary ensembles. We
apply the general formula to the critical power-law banded random matrices and the unitary Moshe-Neuberger-
Shapiro model and compare the DOS’s of these models.
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Recently, extensive attention has been devoted to uncoigner-Dyson level statisticg9]. The probability distribu-
ventional random matrix theorie®RMT'’s) that interpolate  tion of the Hamiltonian? in MNS is given by P(7)
between the Wigner-Dyson RMT and banded RBRM) [ dU Py(F1), where
with the (almos} Poissonian level statistics and can be used v
as a helpful tool to explore the localization transition. One of N |2
these models is the power law banded random maRLx oA ~ A A a A )
BRM) theory [1-3] for which the variance of the off- PU(H)Mex;{—TrHZ—(m) Tr([U, 0,71 )

diagonal elements reads 2
, 1 1 PO . N .
PLBRM: (|V;j|*)=5 N o . the matrixU is either unitary for complex Hermitian matri-
1+ —sin(N|l—j|” / b2« ces’H (the unitary MNS or orthogonal for real symmetric
a

(1) matrices’{ (orthogonal MN$ anddU is the Haar measure.
The spectral properties of the unitary MNS turn out to be
It is nearly constant inside the batid-j|<\~b, and de- equivalent to a system of noninteracting one-imensional
creases as a power-law functigfV;;|?)~1/i—j| 2« for ~ (1D) fermions in a parabolic confinemef8]. The spectral
li—j|>N\. Equation(1) is written for periodic boundary con- statistics of the orthogonal MNS coincidgl0] with the sta-
ditions of the PLBRM Hamiltonian. The special case1is tistics of 1D fermions in a parabolic potential with the long-
relevant for description of critical systems with multifractal range attractive interaction<(x;—x;) "~ 2, This model of
eigenstate§1-5], in particular for systems at the Anderson strongly correlated fermions is a particular case of the
localization-delocalization transition point. On the other Calogero-Sutherland model which has been intensively stud-
hand, it has been conjecturgg] that the spectral statistics of ied as a toy model for the fractional statistics. In both cases
critical PLBRM with large b can be mapped onto the the parameteb of MNS corresponds to the inverse tempera-
Calogero-SutherlandCS) model [7] at low temperature ture of CS:b~1/T¢s.
where instead of the spectral problem one studies the statis- The connection between the two models is especially
tics of interacting (for the real off-diagonal elements in clear in the unitary case where the unitary mattix
PLBR) or noninteractingfor the Complex off- diagonal ele- =M diag{ei%} MT can be diagona“zed by a unitary trans-

ments in PLBR fermions in a parabolic confinement poten- formation. Then the variances bf | (M’rr)i[M)_ in MNS
tial. The casex>1 corresponds to the power-law localization b

are given by
which can be found in certain periodically driven quantum-
mechanical systemi8]. If a<1/2 the spectral statistics of
PLBRM approaches the Wigner-Dyson universality class n 1 1
with B=1 or 2. MNS:  (|Vj] )=3 BE P ©)
The exactly solvable model of Moshe, Neuberger, and 1+ %) sinz(%)

Shapiro(MNS) also incorporates both the Poissonian and the
One can easily see that E8) coincides with Eq(1) ata=1

*Electronic address: bom@ictp.trieste.it if the phasesp,=2mn/N are arranged as an ordered array
"Electronic address: kravtsov@ictp.trieste.it on a circle. In general the MNS model can be considered as
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an extension of the PLBRM model for the case of the arbi-diagonal matrix elements are parametrically small compared
trary arrangement of phaseg randomly distributed over the to the diagonal ones and the system is close to the localiza-
circle. tion, no field-theoretical approach is known so far. Yet such

The following formula is valid to calculate the averaged almost-diagonalRMT’s may possess nontrivial properties
value of an observabl&(H) which is invariant under the because of the slow decay of the off-diagonal matrix ele-
transformationd — M THM: ments (|H;;|?) with increasingl|i—j|. For instance, it is
of fundamental interest to study the spectral statistics in
systems with power-law localization that takes place in
the power-law banded random matrix ensemblesyatl.

' 4) Another problem to study is the critical almost-diagonal
J P({¢i})D{¢i} PLBRM. It is known that the eigenvectors of PLBRM with
a=1 remain multifractal for an arbitrary small value of

Here P({¢}) is the joint probability distribution of phases A [5]. This means that the typical eigenfunction is extended

[ s PdenDI

(Ao

(9] though very sparse at small Their fractal dimensions are
small as compared to the dimensids 1 of the underlying
Sin2<‘pi_"oi) chain with the long-range hopping. Thus almost-diagonal
P({cp})~H 2 ) PLBRM’s may display a localization-delocalization transi-
=] N2 @i~ @ tion with changing the exponent as well as their large
1+ %) S'”Z( 5 bandwidth counterpaftL].

Recently, we have suggested a method that allows us to
and(A)p stands for the averaging over the Gaussian randorstudy spectral statistics of a disordered system described by
matrix H with entries having zero mean value and the vari-an ensemble of the almost-diagonal random matfiz&} It
ance given by Eq(3). is a virial expansionin the number of interacting energy

The two-point correlation function, which follows from levels. Unlike the field-theoretical approach, the virial expan-
Eq. (5) after the integration over all but two phases, wassion starts from the Poissonian statistics and yields a regular
calculated by Gaudin with the help of the model of freeexpansion in powers of the small parameter controlling the

noninteracting fermions with a linear spectr{iri]: ratio of the off-diagonal elements to the diagonal ones
L ) oSty g (|Hi4|?/(HF)~Db?<1. ~The expansion has been repre-

Ro(s)=1— f , sented by the summation of dlagrame which are generated
(2mb)?| J-in(e?™-1) e“+1 with the help of the Trotter formula. A rigorous selection rule

has been established for the diagrams, which allows us to

s=¢i— ¢;=(¢i—¢;)(N/2m). (6)  account for exact contributions of a given number of reso-

i i i nant and nonresonant interacting levels. The method offers a
If |s|>b, the correlation function is almost constant . nuqliable way to find an answer to the question of when a
Ry(|s[>b)—1. There |s.a repulsion betwetzan phases at qyeak interaction of levels can drive the system from local-
small scale controlled b: Ry(|s|<b)~(s/b)". ization toward criticality and delocalization. An example

witﬁorgitggemf\lpgcat\g :;a:ft'tﬁiczlth;ecrs'gﬁle Zhg)i’:/l of the spectral form factor has been considered for a ge-
o ymp y neric dependence of the variar(¢Hi¢j|2> on the difference

—¢» they approach the Wigner-Dyson statis(is3,§. This i—j. It has been shown that a term of the ordeh6f? is

is because the phase repulsion in MNS is strong at large : :
P P g g governed by the interaction afenergy levels. The general

The phases; ; form an approximately equidistant latticelike X :
structure[2]. In the opposite case<1, the phase repulsion €0y has been applied to the Rosenzweig-Potgrmodel
and to the critical PLBRM.

in MNS is weak and the phasef ; do not form a regular , ,
structure. Disorder in the phase arrangements at small dis- /" the present paper, we continue studying the spectral
tances |¢;— ¢;|~1 may become especially important. statistics with the help of the virial expansion. We calculate
Therefore, there is no evident correspondence between crifib density of state®OS) for the ensembles of the Gaussian
cal PLBRM and MNS ab<1 even though both ensembles a@lmost-diagonal random matrices. Based on the detailed pre-
have the same first correction to the Poissonian level rigiditpentation of the method in Ref15], we will explain the

[3,12] and the numerics have revealed a relatively small dif-corresponding diagrammatic technique for DOS. We derive
ference in the level rigidity of PLBRM and MNS &t~1  the leading correction to the Poissonian DOS for the models

[12]. of critical PLBRM and MNS.

The progress in BRM and PLBRM theories became pos- Let us consider a Hermitian random matfiRM) of size
sible because of mappirid,13] onto the nonlinear super- NXN, N>1, from a Gaussian ensemble. We assume that
symmetrica-model[14] that allowed one to obtain rigorous the matrix entries are random and independent. The RM is
results by using various powerful methods of the field theorythe HamiltonianH of the matrix Schrdinger equatiorH ¢,
However, theo-model always starts from delocalizéde., = e€,4,,, wheree, and ¢, are the eigenvalues and eigenvec-
diffusive) modes and such mapping is only justified if the tors, respectively. We define statistical properties of the ma-
bandwidth A>1. In the opposite case where all the off- trix entries as
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1 with an odd powem give zero after the disorder averaging.

(Hij)=0, <Hi2,i>:’E1 (IHij1=b% Fli—j]), i#j, Thus, the powem must be even and we can substitute

— 2K.
) There aren!/2k!(2k—n)! ways to choose R exponen-

where F(|i—j[)>0 is a smooth function of its argument, tials to be expanded iK' from the RHS of Eq(12). There-
and the parametey is small: fore, before taking the limih— o, one has to account for all
possible different arrangements of the expanded exponentials
which results in a summation over the Trotter variables

The conditionb<1 means that RM is almost diagonal. P12, - - Pac-1; Zf1 p=n. Each d|scretelAvar|abIe|
The parameteB corresponds to the Dyson symmetry classeglenotes the number of successive exponendds" fused
Booe=1, Beue=2. The angular brackets denote the en-together:
semble averaging.

We will study the spectral properties of the system con- il
centrating on the ensemble averaged density of states '

b<1.

Xeil:lg[/n- . .eiﬁa’/"x

v
1+i—
n

p; exponentials where V-0

p(E>:< > 5<E—en>>. ®) O
" X 1+i7 e Hotln. .
For almost-diagonal RM the representation of spectral statis-
tics in the time domain is more conveni¢it] therefore we
explore below the Fourier transformed DOS as a function of o AT v
time: ={ ...o\HetP1-11n 1+i7 e HetpIn 1+i7

C(t)=(Tre'"). (9) ) >
X eiHePi+1tn, )

We start with a brief explanation of the method of the

virial expansion that has been developed in detail in Ref. ) ) )

[15]. As far as we investigate the properties of almost-We can introduce scaled variabl¥s=p, /n converting the
diagonal RM’s the Hamiltonian can be naturally divided into ts#mmatlon ?Vefl to tfhet;]ntegralltloln t‘_)V‘aYI _";}L‘d e“m'l"t‘_at'“g

. . . . < e parameten from further calculations. The resulting ex-

a diagonal partf, and a matrix of hopping elements pression must be averaged over the diagonal elenagiatsd

I:IEH€+\7. (10) yields the integral4(t,k) which depends on time powerk,
and parameteg.

For almost diagonal RM’s, the higher the number of in-
teracting energy levels the smaller the correction to the Pois-
sonian level statistics governed by that interaction. In par-
Cp(t) = Ne t2/28. (11) ticular, to findthe leading in b correction gt) to Cp(t),

For a strictly diagonal matrix\(=0) the Poissonian DOS
Cp(t) is calculated straightforwardly from E¢Q):

It follows from the definition(7) that the hopping ele- CO=Cp() +Cy(t) + -+, Cy(t, b<D)<Cp(V),

mentsH; ;=V; ;~b are small compared to the diagonal onesy,e retain in the obtained series all terms that correspond to
Hii=ei~1. However, a direct expansion of the exponen-an interaction of two different species of the diagonal ele-
tials €M="Vt in Eq. (9) in terms ofV would involve serious mentse; ande; via the hopping elements; ; andV;; for
difficulties because the matricés, andV do not commute any indices #j in the range from 1 t?N. Then at fixeck we

with each other. One possible way to overcome these probind the following contribution to the correctiof(t):

lems is to represeng'™=* V)t as a product of exponentials N
containing matricesd, andV separately. We do this using CH=(i X Zy(th) S ((Vi;Vi)b).
the Trotter formuld 17] i#] T
.. . R N no . After integration over R—2 Trotter variables
A B=lim (eM" eBMn=eHt=|im [] (eMtnelVin). {Y1,Y2, ... Yoo}, Iz can be simplified to one-
n—ee n—e P=1 dimensional integral
(12
) _ _ e—t2/4/3 U2 )

In order to obtain corrections t6(t) proportional to pt)™ Ty(t,k)= J (1/4—Y2)k~lg~ (NZBgy.
one has to expanch different exponentials in the infinite kt (k=1)! Jo
product in the right-hand sidéeRHS) of Eq. (12), e "V/"=1 (13

+i(tV/n), setting in the resh—m expf)nentiaAlsf/HO, and  |n accordance with the definitiof7), the Gaussian average
to perform the Gaussian averaging oterandV. The terms  of <(vi,jv,,i)k> can be transformed to the following form:
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t2

Cy(t)=—2Ne 38 E_l Z(bt,m) Z4t,Z(bt,m)],

Z(bt,m)=(bt)?>F(m), (18

S . . . 12
FIG._ 1. Graphic |Ilustr_at|on_ of the serigd46) for th(_e Iegdlng iﬁ(t,Z)E dy e—[(tY)2/B+(1/4—Y2)Z]
correctionC4(t) to the Poissonian DOE(t). Boxes with differ-
ent patterns mark the energy leve|sande; . In each diagram with

a givenk, they are connected by theinteraction lines which are 1 ) 1 ) B
associated with the factaf*(V2<)~ (tb)?. « lol |z 7Y7) 2|1yl 3 =Y )4), B=1
(Vi Vi) =Kk xb2 FHi=]), (14 LA s
where KCg(K) is the combinatorial factor. Due to the Wick
theorem, it is equal to factorials An analytical integration oveY is easily doable gB=2 and
(2k—1)!1,  B=1, the integral(19) simplifies to the error function
’Cﬁ(k): _ (15
kl, B=2. 5 o 2_27
- Tp-a(t,Z)=€ P\ erf( \/ )
We have to sum the contributio®® over the parameter 2(t°=22) 8
at the endC;= =, C{¥. This summation yields the answer (20
for C,(t) as a series in powers of the produbt)(: ) ] )
w Let us consider short- and long-time asymptoticsbif
Cl(t):NE (—1)K(bt)2 Ty(t,k) Kg(k) Ru(K), <1, C; is determined by a diagram with the minimal
k=1 number of the interaction linetsee Fig. ], i.e., we can
1 N keep in the power serie€l6) the single term withk=1
RN(k)ENZ FXi—j]) (16) having Kg(1)=1 and Zu(t,1)= (Vw2 t|)exp(-t74p)
1#] Xerf(t/\4B):
(see the graphic presentation in Fig. \Ve will show below JmB t2
that C, is not larger tharO(b'). We emphasize that neither Cj(bt<1)=— szT |t|exp< - @) erfl —|Ry(1),
the combinatorial factokCg(k) nor the integral over the Trot- @ (21)

ter variablesZ,(t,k) depend on the correlation function
F(|i—=j|). Thus, they are universal. The fact&g (k) is, on . ) ,
the contrary, model dependent. It arises because of summyhich at t<\4B is parametrically smaller tharCp:
tion of the product of the correlation functions(|i—j|) C1/Cplpre1~bX (b1). _
over the indices andj and is not universal. If we associate  ON€ can do the Fourier transform of E@1) and show
the Hamiltonianfl with a one-dimensional chain having that for large energies>1 t_he correct|on_ to the tail of the

) . . ? DOS has the same Gaussian exponential dependence as the
long-range hopping between different sites, the summation ~ . - ) A
overi andj turns out to be the summation in the real spacedistribution of diagonal matrix elements bf unlessRy(1)
along the sites of the chain. As the functiff|i—j|) de- IS divergent:

pends only on the difference ¢if—j| the leading part of the B ,
real space sum is p(e>1)~N VE e (F2:" [14+b% B Ry(1)].
Ry(k)=2 > F¥m)+O(1/N). (17) 22)
m=1

Thus we conclude that there is no slowly decaying Lifshitz
In what follows we will neglect the correction of the order tails for almost diagonal PLBRM witle>1/2 (including the
O(1/N) to Ry(k). critical PLBRM with «=1) even though the multipoint cor-
To further simplify the analysis of DOS we insert Egs. relation functions may significantly deviate from the Poisson
(13), (15), (17) into the serieg16) and change the summa- distribution.

tion order. At first, we sum over the powdr getting the If t>1, the integralZ; can be calculated approximately
answer forC4(t) as a one-dimensional series oweri.e., as by substituting the Dira@ function for the exponential in the
the sum in the real space integrand of Eq(13):
|
_anzp VBT . —t24g -1 NBT 2
e — O(Y)=Z4(t,k)=e t +0O(1/t|9) |, (23
It] b i 2211 (k—1)! 1t

and we obtain a simplified version of the seri&$):
026104-4
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“ Z(bt,m) 2B p( t? ) t
C.(t>1)=—N ~ap Y T -z(btm)/4 <)~ N Y72 _ _
1( ) VBT e m§:1 il e C,(bt<1) N 12 b?|t] ex 13 erf Ny
(29

(24 We emphasize that the sum in real spatg(1)= >, m 2
converges am~1. Thus, when timg is small compared
to b~?! the correction to the Poissonian DOS of the critical
We note thatZ(bt,m)/[t|~bX(bt) and, thus, we can PLBRM is sensitive to the behavior of the correlation func-
schematically rewrite the asymptotic expressi®¥) as  tion Z(m) at short distances. This statement is, in fact, more
C,(t>1)=bx C,(bt). If the functionC,(bt) is finite atany ~ general and holds true for any ensemble of the almost-
value of (bt) the correctionC, is again parametrically diagonal PLBRM, where=>1/2 andRy(1) converges in the

IO[Z(bt!m)]_ll[Z(btim)]v B=1
1, g=2.

smaller tharCp (see examples below thermodynamical limiN—c [19]. . .

Now we will apply the general formulad6), (18) for the If t>1, we s_ubstltute the correlation functi@@6) into
specific models of our interest with the definite correlationthe series24) which converges an~tb. If the product (b)
function (i —j|). is large the correctiorC; is not sensitive to the short dis-

The model of Power law banded random matricge ~ t@ncesm~1 and we can replace the sum owerby the
model of PLBRM is defined by Ed1). We restrict ourselves Ntégral and find the asymptotics at the long tithe-1:

to the critical and almost-diagonal PLBRM wiils=1 and . 2, B=1,
b<1 so that the varianod) simplifies to the following form C,(tb>1)=—Nbe! Mﬁx[ g2 (30)
[18]: ™ P= e
The Moshe-Neuberger-Shapiro maddlhe model of
2 MNS is defined by Eq(3). Let us consider the unitary case
(IVii|H== 5 +0(b%). (25 with B=2. From Eqgs(3) and(7) we find the function for
—| sir?| < li—j :
T N
Al =3 = (3D
The term ofO(b?) is not important for the correctio@;. Ui= D=3 2

We negl i b2+
glect this term below.

We define the correlation functiafi in Eq. (7) for a criti-

N [
;sm(ﬁ|¢i_¢j|)

cal almost-diagonal PLBRM: If b<1, the Gaudin correlation function of the phasgs,
Eq. (6), simplifies to the following form:
i—j ! ! i #j Ro(slb (s/b)” (32
]'—(|'_J|)—§ NZ 7\ i#j. (26 2(s )_1+(S/b)2.
p= sir? Nl

The condition(|V; j|?)<1 holds true in MNS if|¢;— ¢;|

) _ =1. However, in contrast to the PLBRM case where the
Next Wed”gte thahtg-e sum in the redal Epﬁ?f Eq. (1|7)*(;_5 minimal distance ¢; — ¢;| =1, it is violated inside the band
governed by small distances<N and, therefore, its leading 0=<|¢;— ¢j|<b where the matriXH is no longer almost di-

term does not depend on the boundary conditions for th%gonal This band is. however. narrowla€l. Therefore
underlying chain with the long-range hopping the contribution of this band to the DOS averaged over
phasesp; is small in the parametds.

N N .. .
S Fm= 1 1 We apply the §trategy of the virial expansion to calculate
m=1 = 2% [NV o™ the average oved at the fixed phases;, see Eq(4). The
p sir? NM phase averaging is done at the last step and it reduces the
sum in real space to an integral over the difference of two
” phases:
= > +O(1N). 27

m=1 (2 mz)" ®
<RN(k)>¢i:2fo FX(s) Ry(s) ds+O(1N). (33

Substituting Eq(27) into the serieg18) we find the cor-
rectionCy: The case where the correlation functigfi depends on

the difference of the integer indices can be restored from
= pt)2 1/bt\2 Eq. (33) by substituting a sum of thé functions instead
Cl(t)=—Ne_t2/4ﬁ > (_) iﬁ[t,—(—) } (2g)  of the two-p_oint correlator:Rz(s)HEﬁzlé(s—m).. In
m=1 \M 2\m full analogy with PLBRM we can prove that the leading term
of the function(RN(k))#,i in MNS does not depend on the

Let us consider the limiting cases of small and large timeboundary conditions and transform E¢31)—(33) to a sim-
If bt<1, we insertRy(1)=7?/6 into Eq.(21) and arrive at  pler form
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k
»(1 1 C1(B=2)|pLerM
=~ - - th>1l= ——F——=1.
(Ru(K)) g, Zjo (2 b2+52) Ro(s)ds. (34) Cluns
Substituting Eq(32) atb<1 into formula(34) we find The situation is quite different in the opposite limit of the

) short-time scaléb<1, where the asymptotics f@; is gov-
(Ry(K)) = 2b fw S ds (35) erned by the single diagram witk=1. This diagram is
NET (209K Jo (14 S2)ktL highly sensitive to the behavior of the functidfi at short
distances and, therefore, yields absolutely different answers
We insert Eq.(35) into series(16) and derive an analog of for PLBRM and MNS after the summation in real space.

Eq. (18) for MNS At a fixed value ofm or s the leading diagram is of the
B ) ) order of ~b2. In the case of PLBRM the sum oven

c (t)=—Nbe‘t2’8f (tS) 7 [ t ds, reduces to a numerical prefactor in EQ9) leaving the

! 0 (1+S%)% A2 "1+ power ofb? unchanged. The integration ovsiin the case

(36) of MNS is strongly affected by the region<Os<b where

b2F(s) Ry(S)|s-p~1 and the off-diagonal elements of

are of the order of diagonal ones. This region makes the main
_ 28,4 128 contribution to the correction to DOS which is small only

Ca(®) mNbe (1 -e"" ). 37 because of the small volume of this regidis=b. Thus we

The answer(37) coincides with the leading i term of find that the integration over smadkb in MNS leads to a
the Fourier transformed DOS of MNS obtained from thefeduction of the power df in the short-time limit compared
model of noninteracting @ fermions in a parabolic confine- t0 the PLBRM case

ment[9].

Let us discuss the results obtained by means of the virial C1(B=2)|pLerM
expansion for PLBRM in GUHEQ. (28) with g=2] and th<l=s ————— ~
MNS [Eq. (36)]. First we note that at large time scaléb,
>1, the summation over the real space converges at large ] ) ]
distances ifi~tb in PLBRM ands=Sb~tb in MNS). In his is a clear manifestation of theonequwale_nceof
this case, we can simplify the integrand in the right-hand sidé’.BRM and MNS models for smal, or the nonequivalence
of Eq. (34) by ignoring b in the denominator and putting of PLBRM at smallb and the CS model at high temperature.
R,—1. We immediately see that the leading term resulting
from the sum ovemin Eq. (24) is equal to the one originat-
ing from the integral ove6in Eg. (36). Thus, we conclude
that the first corrections to the Poissonian DOS coincide for We are very grateful to Alex Kamenev and Julia Meyer
PLBRM and MNS in the long-time limif20]: for simulating discussions.

which reduces to the following expression:

b.
Caluns
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